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Heat conduction in simple networks consisting of different one dimensional nonlinear chains is studied. We
find that the coupling between chains has a different function in heat conduction from that in electric network
�circuit�. The two coupled particles form an interface and introduce an interface thermal resistance which
reduces the heat current. The reduction of heat current depends sensitively on the position and strength of the
coupling. This might find application in controlling heat flow in complex networks.
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I. INTRODUCTION

Energy and information transports in networks, such as
the metabolism network, neuronal network, porous material
network, and oil production network, etc., have been studied
for a long time �1�, and are attracting increasing attention in
recent years from different fields such as biology, social sci-
ence, computer science, and physical science �2–8�. It is
found that the electric transport changes linearly with the
number of added bonds �3,4�. The whole electric resistance
of a network can be figured out by the Kirchhoff second law
for the complicated parallel and serial electric circuit �5�.
However, little is known about heat conduction in the com-
plex networks, although some progress has been achieved for
single one dimensional �1D� chains �see Ref. �9� and the
references therein�.

The fundamental question for heat conduction in one di-
mensional chains is what is the necessary and/or sufficient
condition for the heat conduction to obey the Fourier law?
From computer simulations, it is found that in 1D nonlinear
lattices with on-site potential such as the Frenkel-Kontorova
�FK� model and the �4 model, the heat conduction obeys
Fourier’s law, namely, the heat conductivity is size indepen-
dent �10�, which is also called normal heat conduction.
Whereas in other nonlinear lattices without on-site potential,
thus momentum is conserved, such as the Fermi-Pasta-Ulam
�FPU� and similar models, the heat conduction exhibits
anomalous behavior �11�, namely, the heat conductivity �
diverges with the system size N as ��N�. A great effort has
been devoted to understand the physical origin and the value
of � �12�. It is found that the anomalous heat conduction is
due to the anomalous diffusion and a quantitative connection
between them has been established �13�. Most recently, we
found that both the normal and anomalous heat conduction
can be described by an effective phonon theory under the
same framework �14�.

More importantly, it is found that a single 1D chain con-
sisting of two segments of different nonlinear lattices exhib-
its very interesting physical phenomena such as thermal rec-
tification �15� and negative differential thermal resistance
�16�. The classical model of thermal rectification has been
extended to a quantum system �17�. The essential ingredients
to make thermal rectification �whether it is classical or quan-

tum� are �i� the spatial symmetry breaking, and �ii� the intro-
duction of nonlinearity. The study or rectification has been
extended to the mass graded anharmonic lattice �19�.

A recent experiment has demonstrated the thermal rectifi-
cation in a heterogeneous nanotube �18�, in which half of the
tube has been gradually mass-loaded on the surface with
heavy molecules. The result is quite similar to that from
mass graded anharmonic lattice �19�.

The study on the 1D single chain can be regarded as the
first step towards the understanding of heat conduction in
realistic physical systems, i.e., complex networks. The sec-
ond step should be the study of heat conduction on a simple
and small network �20,21� and in networks with fractal ge-
ometry �22,23�, which represent an experimentally testable
example of polymer network with fractal geometry.

In general, a complex network consists of many 1D �or
quasi-1D� chains with diverse couplings among them. There-
fore the key to understand the heat conduction in networks is
to understand the influence of coupling to heat fluxes in
simple networks, i.e., coupled chains. In this paper, we will
first study the case of two coupled chains with both the same
and different lengths and then study the case of multiple
coupled chains. After that, we study the effect of the self-
coupled loop, which appears in the complex networks very
often. Our principle results are as follows: �i� The coupling
will introduce an interface thermal resistance and thus re-
duces the heat current. The Kirchhoff second law is appli-
cable only after considering the induced interface resistance,
which is different from the situation of electric network �cir-
cuit� where no interface resistance is induced and the Kirch-
hoff second law can be directly applied. �ii� The reduction of
heat current depends sensitively on the position and strength
of the coupling, which can be figured out by the equivalent
thermal circuit. �iii� In the case of single chain with self-
coupled loop, the reduction of heat current decreases with
the increase of the length of loop. �iv� There is a saturation
effect for the coupling strength, which is related to the cor-
relation between the two coupled particles.

The paper is organized as follows. Section II gives the
model of coupled chains and presents the numerical simula-
tions. Section III presents the model of a single chain with
self-coupled loop and the numerical simulations. Finally,
Sec. IV includes the discussion and the conclusions.
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II. MODEL OF COUPLED CHAINS

For simplicity, we consider m 1D FPU-� chains �11�, with
several couplings between any two of them. The two ends of
each chain are contacted with the Nose-Hoover thermostat
�24� with temperature Th and Tl, respectively. Without cou-
pling, each chain has a Hamiltonian H=�i� 1

2 pi
2

+Vi�xi ,xi+1��, where V�x�= 1
2x2+ 1

4x4, xi represents the dis-
placement from the equilibrium position of the ith particle.
The motion of the particles for i=2,3 , . . . ,N−1 satisfies the
canonical equations ẋi=

�H
�pi

; ṗi=− �H
�xi

. The dynamical equa-

tions for the heat baths are �̇h=
ẋ1

2

Th
−1, �̇l=

ẋN
2

Tl
−1. The dynami-

cal equations for the first and last particles are ṗ1=− �H
�x1

−�hp1, ṗN=− �H
�xN

−�lpN.
The temperature is defined as T�i�= �pi

2� and the heat flux
along the chain is J=�pi

�V
�xi+1

�. Suppose there is a coupling
with strength k between the node i of one chain and the node
j of another chain, then we have an additional new potential
Vij� = k

2 �xi−xj�2+ k
4 �xi−xj�4. The equations of node i and node

j become

ṗi = −
�H

�xi
−

�Vij�

�xi
ṗj = −

�H

�xj
−

�Vij�

�xj
. �1�

In our numerical simulations, we take Th=3.0 and Tl
=2.0 for all the chains and first consider the case of m=2,
i.e., two coupled chains in this paper, but the results are not
limited to m=2. The two chains are coupled at different
nodes i , j. We find that both the temperature distribution and
the total flux in the steady state are changed with the cou-
pling positions and strengths.

Case I: Two chains of the same length coupled together

We consider two identical chains with the same length,
N=20. Like all models of heat conduction, there are always
temperature jumps at the two boundaries �25� which is
clearly shown in Fig. 1�a�. When two chains are coupled
together, regardless of the coupling position �called the junc-
tion�, there is also a temperature jump at the junction and the
coupled particles have roughly the same temperature, see
Figs. 1�b�–1�d�.

In Fig. 2 we show the corresponding fluxes of Fig. 1
where the arrows denote the directions of fluxes. Figure 2�a�
is easy to be understood from their identity, where two un-
coupled chains have the same flux. However, Fig. 2�b� shows
a very interesting result—the reduction of the heat current.
This is completely different from the electric circuit. It is
well known that a circuit of two chains with four equal re-
sistance R connected by a conduction line at the middle is a
symmetric circuit. Since there is no potential difference be-
tween the two connecting points, there is no current through
the middle connection line, thus the current in the electric
circuit does not change! It remains the same if the two chains
are disconnected.

What makes the “thermal circuit” different from the elec-
tric circuit? To this end, we need to go to the definition of
temperature. The temperature is a measure of the kinetics of
the particle, i.e., it is an ensemble �time� average of the ki-

netic energy. Without coupling, the middle particle at each
chain is connected only by its two nearest neighbors. After
coupling, the middle particle is connected with three par-
ticles which changes its equation of motion. Even though the
two particles in the middle have the same temperature �same
average kinetic energy and same velocity distribution�, it
does not mean that the two particles always oscillate in the
same way. This is the fundamental difference between the
electric circuit and thermal circuit.

Because the coupled particles subject to an additional
force from its coupled partner in another chain, it oscillates
differently from that of its neighbors in the same chain. In
fact, this is equivalent to the introduction of an interface
resistance at the junction. This resistance is also called the
Kapitza resistance �26� which is defined as Rint=�T /J,
where �T is the temperature jump between the left and right
particles of the interface �coupled particle in the middle�. For
the convenience of analysis, we divide Rint into three parts,
i.e., Rint

l , Rint
r , and Rint

m which denote the interface resistances

FIG. 1. �Color online� Temperature distributions of two coupled
chains of length N=20 with k=1 and different coupling positions.
The thin lines �black� denote the coupling. The insets are the sche-
matic configurations of coupled chains, and the arrows label the
direction of heat flow. �a� No coupling; �b� coupling at i= j=10; �c�
coupling at i=10, j=15; �d� coupling at i=5, j=15.

FIG. 2. �Color online� The corresponding fluxes of Fig. 1.
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between the coupled particle and its three neighbors, respec-
tively. The heat resistance circuit is shown in Fig. 3 where R0
denotes the thermal resistance between two neighboring par-

ticles, Rb
l =

Th−T�2�

J and Rb
r =

T�N−1�−Tl

J denote the boundary re-
sistances at the two ends, m1 and m2 denote the numbers of
free springs between the coupled particle and the two bound-
aries, respectively, and satisfy m1+m2=N−5. The heat fluxes
Jl and Jr in Fig. 3 can be easily expressed as

Jl =
Th − Tc

Rb
l + m1R0 + Rint

l ,

Jr =
Tc − Tl

Rb
r + m2R0 + Rint

r , �2�

where Tc represents the temperature at the junction.
For the special case of symmetric coupling, we have Jl

=Jr	J, thus the heat current through each chain becomes

J =
Th − Tl

Rb
l + Rb

r + �N − 5�R0 + Rint

, �3�

where Rint=Rint
l +Rint

r . Obviously, J is less than J0

=
Th−Tl

Rb
l +Rb

r+�N−3�R0
for the uncoupled chain, Rint�2R0. The physi-

cal mechanism of Rint�2R0 can be understood from the fol-
lowing. The coupling is equivalent to adding another load to
the oscillator, the oscillator will thus oscillate in smaller am-
plitude than before.

With the increase of coupling strength k, the disturbance
between coupled particles will be larger and results in a
larger Rint, which leads to more reduction of the flux J.

Without any coupling, the temperature of the ith particle
inside the FPU chain is

Ti 
 T�2� −
i − 2

N − 3
�T�2� − T�N − 1�� , �4�

where i=2, . . . ,N−1. However, with coupling, the tempera-
ture distribution becomes

Ti 
 T�2� −
i − 2

ic − 3
�T�2� − T�ic − 1�� , �5�

for i=2, . . . , ic−1 and

Ti 
 T�ic + 1� −
i − ic − 1

N − ic − 2
�T�ic + 1� − T�N − 1�� , �6�

for i= ic+1, . . . ,N−1, where ic denotes the coupling position.

The heat current flows at the junction can be understood
from Eqs. �4�–�6�. For instance, the particle at i=10 has
higher temperature than the particle of i=15. Heat always
flows from high temperature to low temperature, therefore if
one connects the particle i=10 in the upper chain to particle
i=15 in the lower chain, there will be a heat current flow
from the particle i=10 �higher temperature� in the upper
chain to particle i=15 �low temperature� in the lower chain.
As the coupling tries to make the connected particles have
the approximate same temperature, this will drag the tem-
perature of particle i=10 down a little bit, thus we see the
increase of the heat current in the part of i� �2,10� in the
upper chain in Fig. 2�c� compared with the case in Fig. 2�b�.
In contrast, as the heat current flows to particle i=15 at the
lower chain, the temperature at i=15 is increased, thus the
increase of the temperature difference between i=15 and i
=20, which leads to the increase of heat current in segment
of i� �15,20� in lower chain. The exchanged flow at the
junction equals the difference of fluxes between the two
sides of the junction. This is what we observe in Figs. 1�c�
and 2�c�. The same mechanism applies also to Figs. 1�d� and
2�d�.

To demonstrate the dependence of Rint on the coupling
strength, we draw Rint vs k in Fig. 4�a� where Rint increases
with k and then it is saturated for large k. The saturation is
also reflected in J and �T, see Fig. 4�b�.

The effect of saturation can be understood from the cor-
relation. Suppose the motion of two neighboring particles are
correlated in the absence of coupling �with another chain�.
The coupling, acting as an external perturbation, will reduce
this correlation and hence reduce the flow. When the cou-
pling strength is too strong, the two coupled particles in dif-
ferent chains will become correlated. Therefore the coupling
cannot be considered as a pure external perturbation and fur-
ther increase of k will not affect the correlation anymore. We
find that the variation of the relative distance between two
neighboring particles may partially reflect this correlation.
The possible reason might be that the transfer of heat energy
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FIG. 3. �Color online� Schematic illustration of the heat resis-
tance circuit in two coupled chains.

FIG. 4. �Color online� �a� Interface thermal resistance Rint vs
spring constant k; �b� heat current J and temperature jump �T vs k.
The circles and triangles denote �T and J, respectively. The results
are for two identical coupled chains with coupling at the center
where parameters are the same as in Fig. 1�b�.
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or flow is through the impact of neighboring particles, i.e.,
the variation of potential. The flow will reach its maximum
when the positions of the neighboring particles have their
largest variation at the same time. Therefore we introduce the
displacement correlation �for the two particles in the same
chain� as follows:

C = ��xic−1
xic

�� , �7�

where “�¯�” means the time average. We find that C has a
similar behavior with the heat flow J �see the circles in Fig.
5�. For the two coupled particles in different chains, we use

C = ��xic
yic

�� , �8�

to calculate their displacement correlation where xic
and yic

are the displacements of the coupled particles in two differ-
ent chains. The triangles in Fig. 5 shows the result. It is easy
to see that the correlation between the two coupled particles
becomes saturated for strong coupling and is almost the same
value with the correlation from Eq. �7�, indicating the further
increase of coupling cannot reduce the correlation between
the neighboring particles or flow. The reason is that when k is
larger than a certain value, the two coupled particles oscillate
approximately in the same way.

Case II: Two chains of different lengths coupled together

We extend our study to the more general case, namely,
one or multiple couplings in two chains of different lengths.
It is found that the reduction of heat flux by couplings is
quite general. Figure 6 shows the temperature distribution of
two coupled chains with different lengths N1=20 and N2
=30, respectively �see Fig. 6 caption for more information�.
We can see some common features between Figs. 6 and 1,
i.e., there are temperature jumps at the coupled particles and
the coupled particles have the approximate same tempera-
ture. Another interesting thing is that the crossing couplings
in Fig. 6�d� make the middle part of the coupled chains ap-
pear a temperature plateau which might be useful in heat
control.

Figure 7 shows the corresponding fluxes of Fig. 6. The
longer chain with N2=30 has smaller heat current. In fact,
like in the previous cases shown in Figs. 1 and 2, the heat
current flow in the �multi�coupled chains of different lengths
can be also understood from Eqs. �4�–�6�.

We have also checked the heat conduction in multiple
chains with a diversity of couplings, such as in the three
coupled chains with different lengths, and observed the simi-
lar results as in the case of two coupled chains. We conclude
that, in general, the coupling will introduce an interface re-
sistance at the junction, thus affect the heat flow through the
whole system.

III. MODEL OF SINGLE CHAIN WITH SELF-COUPLED
LOOP

Another interesting question is how do the self-coupling
or a shortcut in a single chain affect the heat current? This
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CCCC

kkkk

FIG. 5. �Color online� The displacement correlation of two par-
ticles in the same chain �circles� and displacement correlation of
two particles in two different chains �triangles�. The results are for
two identical coupled chains with coupling at the center where pa-
rameters are the same as in Fig. 1�b�. FIG. 6. �Color online� Temperature distributions of two coupled

chains with different lengths N1=20 and N2=30 with k=1 and dif-
ferent coupling positions. The �thin and dotted� black lines denote
the coupling. The insets are the schematic configurations of cou-
pling chains, and the arrows indicate the direction of heat flow. �a�
No coupling; �b� one coupling at i=5, j=8; �c� two couplings at
i1=5, j1=5 and i2=15, j2=25; �d� two crossing couplings at i1=5,
j1=20 and i2=15, j2=10.

FIG. 7. �Color online� The corresponding fluxes of Fig. 6.
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may happen in the polymer chain and biological networks
�27�. For example, if there is a shortcut between the particle
i1 and the particle i2 of a chain, does this shortcut reduce the
flux? To solve this problem, we first draw the heat resistance
circuit as in Fig. 8 where m1+m2+m3=N−7. The equivalent
resistance R� is given by

R� =
Rint

m �Rint1
r + m2R0 + Rint2

l �
Rint

m + Rint1
r + m2R0 + Rint2

l , �9�

and the flux can be calculated by

J =
Th − Tl

Rb
l + �m1 + m3�R0 + Rint1

l + R� + Rint2
r + Rb

r . �10�

From Eq. �10� it is easy to see that the interface resis-
tances induced by the self-coupling will also reduce the heat
flux in the single chain. Our numerical simulations have con-
firmed the prediction, see Fig. 9�a�. The “triangles” in Fig.
9�a� is the result with N=20, k=1, i=5, and j=15. Compar-
ing it with Fig. 2�a� of no coupling, the flux is significantly
reduced. Circles, triangles, and squares in Fig. 9�a� denote

the cases of k=0.5, 1, and 2.0, respectively. From the middle
parts of this figure, we see that large coupling makes less flux
go through the original path.

In order to see the influence of coupling strength in more
detail, we show flux vs coupling strength k in Fig. 9�b�. The
circles denote the total flux and the triangles denote the flux
going through the shortcut. Obviously, the total flux becomes
stabilized when k�1 and the flux through the shortcut in-
creases monotonously with k, confirming the saturation ef-
fect revealed in Fig. 4.

Except the coupling strength, the length m2= i2− i1−2 of
the loop may also influence the flux J. For a fixed m1, from
Eq. �10� it is easy to find

dJ

dm2
� 0, �11�

where m3=N−7−m1−m2 is used. Therefore J will increase
with m2. Our numerical simulations have confirmed it, see
Fig. 10�a� where i1 is fixed at i1=5 and i2 is changed from 8
to 17.

The influence of m2 on J may be also reflected by the
displacement correlation. Here we define the correlation as

C = ��xi1
xi2

�� . �12�

Without coupling, i1 is less correlated with i2 for larger m2.
And with coupling, this decreasing relation should be kept
although the value of correlation increases a lot because of
the coupling. This has been confirmed by numerical simula-
tions; see Fig. 10�b�.

IV. DISCUSSIONS AND CONCLUSIONS

In this paper we have studied the influence of coupling in
simple networks on the heat conduction. It is found that dif-
ferent from the electric circuit, the coupling affects very
much the heat current flow in the thermal circuit. In elec-
tronic circuit, if two points have the same electric potential,
then when these two points are connected, it will not affect
the current through the system. However, in the thermal cir-
cuit, even if the two points in different chains have the same
temperature, if these two points are connected, the current
through the system will be reduced. The reason is that any
introduction of coupling is equivalent to an introduction of
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FIG. 8. Schematic illustration of the heat resistance circuit in a
chain with self-coupled loop.

FIG. 9. �Color online� �a� The distributions of flux in a single
chain with self-coupled loop. N=20, i1=5, and i2=15 where circles,
triangles, and squares denote the cases of k=0.5, 1.0, and 2.0, re-
spectively. The arrows in the inset of �a� indicate the direction of
heat flow; �b� shows how the flux in �a� changes with the coupling
strength k where the circles are the total flux and the triangles are
the flux through the shortcut.

FIG. 10. �Color online� Influence of loop length m2 for k=1 and
i1=5 where �a� J vs i2 and �b� C vs i2.
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an interface resistance and thus influences largely the heat
current in the circuit. The interface resistance saturates for
larger k.

The study given in the current paper, although it is very
preliminary, provides an important message—the thermal
circuit is very different from the electric circuit.

On the other hand, even though there exists difference
between the electric circuit and thermal circuit, thermal di-
ode, and thermal transistor which are similar to electric coun-
terparts can be worked out to control heat flow like we do for
electric flow. More importantly, a recent work on the thermal
logic gate �28� might overturn a long believe perception that
heat is useless and harmful for information transmission and
processing. One day, heat can be used as an information
carrier and can be processed like electrons and photos.

Therefore the study given in the current paper may shed
light not only for studying heat conduction in complex net-
works and understanding heat conduction in complex mate-
rial and biological systems, but also may stimulate us to
think about how the heat “information” is transmitted in the
complex networks.
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